SOME IMPLEMENTATIONS OF MULTIGRID LINEAR SYSTEM SOLVERS

P.W. Hemker and P.M. de Zeeuw

(Centre for Mathematics and Computer Science, The Netherlands)

ABSTRACT

In this paper portable and efficient FORTRAN implementations for
the solution of linear systems by multigrid are described. They are
based on ILU- or ILLU- relaxation. Scalar and vector versions are
compared. Also a complete formal description of a more general multi-
grid algorithm is given in ALGOL 68.

1. INTRODUCTION

At the moment several implementations of multigrid methods are known
for the solution of linear systems that arise from the discretization
of more or less general elliptic partial differential equations (Dendy,
(1982) , Foerster and Witsch (1982), Hemker, Kettler, Wesseling and de
Zeeuw (1983)). Also some experiences for computations on vector
machines such as the CRAY 1 or the CYBER 205 have been reported (Barkai
and Brandt (1983), Dendy (1983), Hemker, Wesseling and de Zeeuw (1983)).
It appears that really efficient programs are now available. E.g. for
the Poisson equation a code has been developed (Barkai and Brandt (1983))
for the CYBER 205, that solves the problem "up to truncation error" in
0.36 usec per meshpoint. It will be clear that -even with the present
day computer technology- such a high speed can be obtained only when
the computer code is specially tuned for the one particular problem and
for the one particular machine.

In this paper we discuss the implementation of multigrid methods, not
for a particular machine or problem, but for general elliptic 7-point
difference equations and in a machine independent programming language.
We describe two FORTRAN codes of which the purpose is to provide the
user with a program that efficiently solves a large class of difference
equations. A first code of this type was introduced by Wesseling (1982a).
The codes are autonomous, i.e. they solve the linear systems of equations
just like any standard subroutine for the solution of linear systems.

The user has to specify only the matrix and the right hand side. Two
versions of the codes are available -both in portable FORTRAN- one for
use on scalar- the other for vector- (=pipeline) computers.

In section 2 of this paper we describe the problems to be solved.
In section 3 we give an outline of the MG-algorithms used. The structure
of the FORTRAN implementation is given in section 4 and in section 5
some remarks are made about computing times. In the first appendix, we
present an ALGOL 68 program that gives a complete formal description
of the flexible algorithm as mentioned in section 3. In a second
appendix we give the user interfaces of the FORTRAN codes.

86 HEMKER and DE ZEEUW

2. THE DIFFERENCE PROBLEM

We consider the scalar linear second order elliptic PDE in two
dimensions

+ + + = f, 2.
a, . + 2 alZuxy + a22uyy aju, azuy a, £ (2.1a)

on a rectangle Q < Rz, with variable coefficients ai., ai and with
boundary conditions J

i
=<
o
B
—

u +au_+ B u
n s

(2.1b)
u

]
Q
o]
=]
1

where FN U PD = 8Q. The subscripts n and s denote the derivates normal

to and along the boundary. If the equation (2.1) is discretized on a
regular triangulation of the rectangle as given in Fig. 1, then the
discretization cbtained by a simple finite element method (with piece-
wise linear trial- and test-functions on the triangulation) will be a
linear system)

Ah u = fh’ (2.2)

with a regular 7-diagonal structure. We consider codes for the solution
of these linear systems. The 7-point discretization is the simplest
one in which also cross~derivatives uxy can be represented. It does

not seem worthwhile to consider more complex difference molecules
because the solution of higher order discretizations can be performed
by means of defect correction iteration in which only systems of the
above mentioned form have to be solved.

Fig. 1

On the rectangle { equidistant computational grids ﬂk,
k=0,1,2,...,%, are defined by

k -k k
Q= {(xl,x2)| ¥ =m2°, m = 0/1,...,N;2 }. (2.3)

U

lllIllllllllllllllllllllllllllllIIlllllllllllllllllIIllIlllIIllllIlIlIlllllIIllIIIlIllIlIllllllllllllllllllllllllll'

MULTIGRID LINEAR SYSTEM SOLVERS 87

: s h X
To obtain a solution uh on , for the codes we consider, the user has

to define the matrix Ah and the right hand side vector fh only for the

discretization on the finest grid Qi 1= Qh.

The regular structure of the domain and the regular 7-point structure
of the difference equations allows a simple structure of the data that
are to be transferred to and from the programs. The solution and the
right-hand-side can be stored in the most straightforward way in a 1-

or 2- dimensional array. The coefficient matrix is stored similarly,
by its diagonals.

There are many possible ways to solve the system (2.2) by multigrid.
Based on previous work (Hemker, (1982), Hemker (1984), Hemker, Kettler,
Wesseling and de Zeeuw (1983), Hemker, Wesseling and de Zeeuw (1983),
Kettler (1982), Wesseling (1982a), Wesseling (1982b)), in this paper we
select two particularly efficient strategies for which FORTRAN codes
have been made available and we give the description of a more general
multigrid algorithm. A detailed ALGOL 68 program which implements this
more general algorithm is included in appendix 1. It can be used to
experiment with the different possibilities.

3. THE MULTIGRID CYCLING ALGORITHM
The general multigrid algorithm for the solution of (2.2) is an
iterative cycling procedure in which discretizations of (2.1) on all

grids ﬂk, k =0,1,...,%, are used. We denote these discretizations by
Ak uk = fk’ k =0,1,...,% k denotes the "level of discretization" and

we take Ak = Ah and fk = fh‘

One multigrid iteration cycle on level k is defined by the subsequent
execution of

(1) p relaxation sweeps applied to the system Ak u = fk'
(2) the application of a "coarse grid correction", and
(3) again g relaxation sweeps for Ak u = fk.

The coarse grid correction consists of: (1) the computation of

S N T (3-1)

where ﬁk is the current approximation to the solution and Rk—l " is a
’

restriction operator which represents the current residual on the next
coarser level; (2) the computation of ak-l' an approximation to the
solution of the correction equation

Aot Uk-1 T Feer (3-2)

88 HEMKER and DE ZEEUW

This approximation is obtained by application of s multigrid iteration
cycles on level k-1, with a zero starting approximation; and (3)

updating the current solution Yy by

=1

=& 3.
e T 0t R e Berr (3.3)

where the prolongation operator Pk k-1 denotes thg interpolation from
level k-1 to k. ‘

On the coarsest level another method (at choice) can be used for the
computation of ﬁo.

In principle, the parameters p, g and s and the operators Rk-l K’
r
Ak 1 Pk k-1 are free to be chosen. Obvious restrictions are

p+g>=1l and l<=s<=3. A natural choice for combination with the finite
element discretization (2.2) is the use of a piecewise linear inter-—

polation over triangles in Qk—l for Pk k-1° The corresponding restric-
I

. . : _ ST . .
tion is the transposed operation Pk—l,k = Pk,k-l' This prolongation
and restriction are exactly the 7-point prxolongation and restriction as
described in Wesseling (1982b). With these Pk k-1 and Rk-l X the
r ’

finite element discrete operators on coarser grids are easily derived
from the fine grid finite element discretization by

Bp =R M By K= Lelee2, L (3.4)

Thus, the coarser grid discretizations are obtained by algebraic
manipulation only.

An ALGOL 68 program, based on these choices for the operators is
presented as a worked-out illustration in appendix 1. The multigrid
cycling procedure is given in proc MG. It is imbedded in a complete
solution procedure proc MGM, which also checks the consistency of the
input data, which generates the coarse grid operators by (3.4) and which
constructs an initial estimate by "full multigrid", i.e. first it finds
an approximate solution on the coarser grid and interpolates this to
the next finer ones. The parameters p, q, s, the relaxation procedure
and the stopping strategy are still to be chosen. For a set of default
parameters (that can be changed by the user) an autonomous procedure is
given in proc SOLVE SYS. This procedure requires as data only the
matrix Ah, the right hand side vector fh and the number of levels 2.

It delivers the solution uy without further interference by the user.

In the procedure MGM the user can select his own multigrid strategy
(p,q,s) and he may select from different relaxation procedures: Point
Gauss Seidel, Line Gauss Seidel or Incomplete Line LU-decomposition
relaxation. V-cycles are obtained by s=1, W-cycles by s=2.

|
|

MULTIGRID LINEAR SYSTEM SOLVERS 89

4. THE STRUCTURE OF THE FORTRAN IMPLEMENTATIONS

Less flexible but more efficient implementations have been written
in FORTRAN. Here we consider two versions of the general MG-algorithm.
Both use p= O, s= g= 1 as the strategy. The first version (MGD1) uses
Incomplete LU-decomposition (ILU~) relaxation as the relaxation
procedure (Wesseling (1982a)), the other (MGD5) uses Incomplete Line
LU-decomposition (ILLU-) relaxation (Kettler (1982)).

MGDl is particularly efficient because of the smoothing properties
of the ILU-relaxation (Hemker (1982), Kettler (1982)) and the efficient
residual computation. In this version on each level the 7-diagonal
matrix Ak is decomposed as

B T he % m &
where Lk is a lower-triangular matrix (with unity on the main diagonal)

and Uk is an upper-triangular matrix. The requirement that Lk and Uk

have non-zero diagonals only where Ak has, determines Lk and Uk. The

remainder matrix Ck has only two non-zero diagonals of which the

elements are easily derived from Lk and Uk'

One relaxation sweep of ILU-relaxation corresponds to the solution
of the system

(i+1) _ (1)
Lk Uk uk = fk + Ck uk .

After such a relaxation sweep the residual is efficiently computed by

(i+1) _ (i+1) _ (1+1) _ (1)
T = fk - Ak u = Ck (uk u).

The other relaxation method, ILLU-relaxation, which is due to
J.A. Meyerink, is described in Kettler (1982) and in more detail in
Wesseling (these proceedings). A complete description in ALGOL 68 is
found in the ALGOL 68 program in the appendix 1.

The global structure of both MGDL and MGD5 is the same. First, in
a preparational phase, the sequence of coarse grid operators is con-
structed by a subroutine RAP, according to (3.4). Then the decomposition
is performed (in DECOMP). Finally, in the cycling phase, at most
MAXIT iterations of the cycling process are performed. On the basis of
intermediate results -the detection of a small residual norm- the
iteration can be stopped earlier. This necessitates the computation
of this norm (in VL2NOR) in each cycle.

The following is an outline in quasi FORTRAN of the multigrid
cycling process in MGDl. At all computational levels k = 1,2,...,%,
the matrix decomposition Ak = Lk Uk - Ck is available. At the beginning

(or end) of each MG-iteration cycle, u, contains the current solution

90

and r, the corresponding residual.

we

HEMKER and DE ZEEUW

take u2 = 0 and rz = f.
THE MGDl1 ITERATION PROCESS

DO 100 N=1, MAXIT

CALL RESTRI (F,R,L-1) £, =R _ r ,
DO 10 K=L-2, 1, -1 -1 21,272
CALL RESTRI(F,F,K) £, = £ .,

10 CONTINUE k Rk’kﬂ ktl

_ -1
CALL SOLVE(U,F,1) uy = (L, U £,
DO 20 K=2,L-1
CALL PROLON (U,U,K) U =Py %1
CALL CTUPF(V,U,F,K) Ve =G +E,
-1
CALL SOLVE(U,V,K) =(L U) " v,

20 CONTINUE R R k
CALL PROLON(R,U,L) r,=P, . . u, .,
DO 30 J=1,NF % 2,8-1 -1
R(J)=R(J)+U(J) T, =71, +ug,

30 CONTINUE
CALL CTUPF(V,R,F,L) Ve =Cpry + £y,

_ -1
CALL SOLVE(U,V,L) up = (L, Uy) " vy,
CALL CTUMV (U,R) r,=C, (u, -1,
= e |
RES = VL2NOR(R) rl,

IF(RES .LT. TOL) GOTO 200
100 CONTINUE
200 CONTINUE

If no initial estimate is available

In the actual implementation of MGD1l, the matrix Ak is not kept in

storage, but it is overwritten by Lk and Uk' At minimal costs, the

remainder matrix Ck is recomputed each time from Lk and Uk (in the

subroutines CTUMV and CTUPF).

equation, in which a small parameter multiplies the highest derivatives

The other program, MGD5, with ILLU-relaxation, is less efficient
for problems like the Poisson equation, but it is more suitable for
problems such as the convection-diffusion or the anisotropic diffusion

(Hemker (1984), Kettler (1982)).

The cycling process in MGD5 is similar to the one in MGDl.

In this

case, however, the matrices Ak are not overwritten and the residual

is

computed in a straightforward way.

MULTIGRID LINEAR SYSTEM SOLVERS 91

C THE MGDS ITERATION PROCESS

DO 100 N=1,MAXIT

CALL RESTRI(F,R,L-1) £ = R r.,
DO 10 K=L-2, 2, -1 -1 -1, 72
CALL RESTRI(F,F,K) £ = £ '
10 CONTINUE k Rk’kﬂ k+l
CALL RESTRI(U,F,1l) ul = Rl,?. f2,
CALL SMOOTH(U,F,1) relax on level 1,

DO 20 K=2,L-1

C. PR(=

ALL PROLON (U, U,K) W =Py Y
CALL SMOOTH(U,F,K) relax on level k,

20 CONTINUE

CALL PROLON(R,U,L) r, =P u, .,
DO 30 J=1,NF Al
U(J)=U(J)+R(J) U, =u, +r,

30 CONTINUE
CALL SMOOTH(U,F,L) relax on level &,
CALL RESIDU(R,F,U) r,=f, ~ A, u,
RES = VL2NOR(R) I 9,"2

IF (RES .LT. TOL) GOTO 200
100 CONTINUE
200 CONTINUE

All subroutines in the iteration processes in MGD1l or MGD5 have their
own particular features that make them more or less feasible for vectori-
zation. This will be shown in section 5.

5. THE EFFICIENCY OF THE FORTRAN IMPLEMENTATIONS

Both algorithms MGD1l and MGD5 have been coded in portable ANSI-
FORTRAN. The codes pass the PFORT verifier, except that more complex
subscript expressions appear than (I*M+N). (These expressions, where
I is variable and M and N are constants, are the only ones that are
allowed for subscripting by PFORT.) In this portable FORTRAN, optimized
versions for scalar- and vector- architecture have been constructed.

The corresponding codes are called MGD1S, MGDlV, MGDS5S and MGD5V. They
are all in the form of a FORTRAN subroutine. Their user-interface is
given in appendix 2. The different versions run on several machines
among which are the CYBER 205 and the CRAY 1.

If run on scalar architecture, after the preparational phase, the
computing time for the programs is proportional to the number of itera-
tion steps and to the number of points in the finest grid. The prepara-
tional work to generate the coarse grid operators and to form their
decompositions is roughly equivalent to 3 iteration sweeps. The
computing times for the scalar optimized versions on the CYBER 170 and
the CYBER 205 (using scalar architecture) are given in table 5.1.

92 HEMKER and DE ZEEUW

Table 5.1

Computing times for MGDlL and MGD5 in scalar mode, in
usec/ (meshpoint.cycle) .

MGD1S MGD5S

CYBER 170 15.4 24.9
CYBER 205 8.1 11.1

The relative time spent in the different subroutines (as defined in
the previous section) is slightly different for the different machines
(compilers). These times are given in table 5.2. We notice that the
time to compute the prolongations, the restrictions and the norms is
small compared to the relaxation or the residual computations. Further
we see e.g. that the time spent in CTUMV is 3/4 of the time spent in
CTUPF, as is expected (CTUPF runs over all points, whereas CTUMV only
works on points on the finest grid).

Table 5.2

The time spent in the different subroutines in scalar mode,
expressed in the time spent in a complete iteration cycle.

code MGD1S MGD1S MGD5S MGD5S
machine CY 170 CY 205 Cy 170 CYy 205

RAP 2.32 1.50 1.40 1.10

DECOMP 0.86 1.40 0.76 1.9

PROLON 0.072 0.063 0.05 0.046
RESTRI 0.089 0.040 0.06 0.030
VL2NOR 0.040 0.044 0.025 0.032
SOLVE 0.33 0.30

CTUMV 0.15 0.22

CTUPF 0.22 0.29

RESIDU 0.16 0.14

SMOOTH 0.65 0.72

To run portable FORTRAN programs on a vector architecture we have
to rely on the auto-vectorization capabilities of the available
compilers. Both on the CRAY 1 and on the CYBER 205 we found it possible
to vectorize all nonrecursive inner loops in this way. The length of

the vectors in the experiments was (2k+l +1)7 with j=1 or j=2 and

k=1,...,%, where % denotes the finest level of discretization. Most
loops run over lines in the grid (j=1), but in a number of cases loops
run over the entire net (j=2).

Some comparisons of the CRAY 1 and the CYBER 205 have been given in
Hemker, Wesseling and de Zeeuw (1983) There it was shown that the
essential difference between both machines in these computations is the

MULTIGRID LINEAR SYSTEM SOLVERS a3

fact that the CYBER 205 is not very effective for loops with a stride
unequal to 1. This is particularly important in the restriction and

the prolongation, where frequently strides 2 occur. For the restriction
the improvement of vector~- over scalar- computing time was a factor
4.2-5.6 (%=5,6) for the CRAY 1 and 1.2-2.2 (8#=5,6,7) for the CYBER 205.

Nevertheless, it was also shown that -although an essential part
of the computation contains recursive loops- a reasonable gain of
efficiency was obtained for MGDl using the CRAY 1 or CYBER 205 vector
architecture.

Since the experiences reported in Hemker, Wesseling and de Zeeuw
(1983), a new compiler for the CYBER 205 became available (FORTRAN 2.0).
With this compiler it was possible to obtain in portable language a
more efficient implementation of some recursive loops, whereas with the
previous compiler reference had to be made to special "stacklib" routines.

With the portable FORTRAN program on the CYBER 205, an acceleration
factor 3.3-4.6 is obtained for MGDl (acceleration of MGD1lV in vector
mode on a two-pipe CYBER 205 over MGD1S in scalar mode on the same
CYBER). The program MGD5 is less amenable to vectorization. Its
acceleration factor is only 2.1-2.3. Details of the performance of the
different subroutines under vector-mode computation are given in table
5.3. In this table we see the CP-times that are spent in the different
subroutines of MGDl and MGD5, when the vector version is run for one
iteration cycle on the CYBER 205.

Table 5.3

The time (in m.sec.) for the different subroutines in the vector
implementations MGD1lV and MGD5V on the CYBER 205 (two pipes, FORTRAN 2.0
compiler). Between brackets the acceleration factor (compared with the
scalar versions in scalar mode) .

grid 65*65 129*129 257*257

RAP 20 (2.8) 49 (4.2) 143 (5.6)
DECOMP (MGD1) 12 (4.0) 43 (4.4) 161 (4.6)
DECOMP (MGD5) 29 (3.1) 96 (3.7) 352 (4.0)
CYCLE (MGDL1) 1.1 (3.3) 3.3 (4.1) 11.6 (4.6)
CYCLE (MGD5) 2.3 (2.1) 8.2 (2.3) 32.0 (2.3)
PROLON 0.9 (2.4) 2.1 (4.1) 5.9 (5.7)
RESTRI 1.2 (1.3) 3.0 (1.8) 9.5 (2.2)
VL2NOR 0.1 (15) 0.4 (14.8) 1.6 (15.6)
SOLVE 6.8 (1.6) 22.5 (1.8) 82.5 (1.9)
CTUMV 0.3 (25) 1.3 (22.8) 5.8 (20.4)
CTUPF 0.5 (20) 1.8 (21.6) 8.0 (19.4)
RESIDU 0.7 (9) 3.1 (8.0) 13.2 (7.9)
SMOOTH 19.3 (1.8) 72.3 (1.8) 287.5 (1.8)

In table 5.4 we show the megaflop rates for the different subroutines.
These rates are defined as the number of floating point operations per
second divided by 1.0E+6. One can consider these numbers as a measure
of how well the subroutines are suited for the hardware. For different

94 HEMKER and DE ZEEUW

sizes of the finest grid, the rates for the vector- and scalar-version i
are given for the CYBER-205 (two pipes, with autovectorization via the i
FORTRAN 2.0 compiler). For the 65*65 grid also the rate for the i
CYBER 170-750 (with FORTRAN 1IV) is shown. :

The CP-times used for the computation of the megaflop rate is the
time spent in the subroutines on the finest and on all coarser grids.
As can be expected for the vectormachine, the numbers are dependent
on the vectorlengths (i.e. the number of points in the x-direction or
the total number of gridpoints) and whether or not strides greater
than one occur. If we compare the first column for the rates of the
129%129 grid with the first column for the rates of the 257*257 grid, we
see both increases and decreases. The increases are explained by vector-
lengths increasing from 129 to 257, the decreases are explained by
vector lengths increasing from 129*129 to 257*257 = 66049 which makes
splitting of the long vectors necessary because of the restricted number
of vectoraddresses (namely 65535) on the CYBER-205.

Table 5.4

Megaflop rates for the different subroutines. For each grid the rates
for the efficient vector implementation (lst column) and the efficient
scalar version (2nd column) on a two-pipe CYBER-205 (FORTRAN 2.0) are
given. For the 65*65-grid alsoc the rate for the CYBER 170-750 (FORTRAN
IV) is shown (3rd column).

finest grid 65*65 129*129 257*257
RAP (MGD1,MGD5) 13.7 4.9 1.8 | 21.4 5,1 28,7 5.1
DECOMP (MGD1) 8.6 2.1 1.8 9.4 2.1 9.9 2,1
DECOMP (MGDS) 7.1 2.3 2.6 8.4 2.3 9.0 2.3
CYCLE (MGD1) 15.5 4.7 2.6 | 20.3 4.9 23.0 5.0
CYCLE (MGDS5) 12.1 5.8 2.6 | 13.3 5.9 13.6 5.9
PROLON (MGD1,MGD5) 11.5 4.7 2.2 | 19.0 4.7 26.5 4.6
RESTRI (MGD1,MGD5) 8.7 6.9 1.6 | 13.1 7.4 16.3 7.5
VL2NOR (MGD1,MGD5) 84.5 5.6 3.2 | 83.2 5.6 82.6 5.6
SOLVE (MGD1) 11.8 7.5 3.7 | 13.9 7.7 15.0 7.7
CTUMV (MGD1) 84.5 3.4 2.6 | 76.8 3.4 68.3 3.4
CTUPF (MGD1) 68.5 3.4 2.4 | 74.5 3.4 66.3 3.4
RESIDU (MGD5) 84.5 9.4 3.6 | 75.2 9.4 70.1 8.9
SMOOTH (MGD5) 9.8 5.5 2.8 10.2 5.5 10.1 5.5

6. APPENDICES
6.1 Appendix 1

In this appendix the text is given of an ALGOL 68 program which imple-
ments a general multigrid algorithm. The solutions and the right hand
sides are represented in nets, i.e. two-dimensional arrays corresponding

i3 ok R .
to the grid €. The matrices in netmats, i.e. three-dimensional arrays;
here the first 2 indices denote the equation (corresponding to a grid-

point), the 3rd index denotes the diagonal (for details, see the comments
on page 98).

MULTIGRID LINEAR SYSTEM SOLVERS

bristol algol68 text

begin

mode declarations

op

op

PWH/15/12/83
solution of a linear system by multigrid
a complete description
not an optimal efficient implementation
#
net = ref [,] real ;
netmat = ref [,,] real ;
elementary operators
zero = (ref [Jreal a) ref [] real :
(for i from lwb a to upb a
do alil:= 0.0 od ; a);
zero = (net a) net :
(for i from 1 1lwba to 1 upba
do zero ali,] od ; a);
zero = (netmat a) netmat :
(for i from 1 1lwba to 1upba
do zero ali,,] od ; a);
+i= = (net aa,bb) net :

ul =
for i from 11 to wul

for j from 12 to w2

int 11 = 1 1wb aa, 12 = 2 lwb aa,
1 upb aa, u2 = 2 upb aa;

do
do

aali,jle:= bbli,j1 od od

prolongation: linear interpolation
proc 1lin int pol = (net net) net :

begin int 11 = 1 lwb net, 12 = 2 lwb net,

bl = 1 upb net, b2 = 2 upb net;

heap [2%11:2%b1,2%#12:2%b2] real fine;

int jj; real wu2,u3,ul;

ref [] real uip= net(11,€12],
upp= fine[2%11,82%12];
jjs= 2%12; uppljjlz= ul:= uipll2];

for Jjp from 12+1 to b2
do u3:= ul; ul:= uipljpl;

uppl jj+:=17:= (u3+uld)/2;

uppljj+s=11:= ulf
od ;
for ip from 11+1 to b1
do ref [J real ui = net [ip-1 ,€ 12],
uip = net [ip ,8 12],
umm = fine[2%ip-1,82%12],
upp = fine[2%*ip ,82%12];

Jiz= 2%12; u2:= ui(12]); ul:= uipl12];

umm({ jjl:= (u2+ult)/2;

for jp from 12+1 to b2

do jj+:= 1; wu2:= ui [jpl;
u3:= ull; uld:= uipljpl;
umm{jjl := (u2+u3)/2;
uppl3jl := (u3+ul)/2;

ji+:= 1
umm{jjl := (u2+ult)/2;
uppljjl := ul
od
od ; fine

uppljjl:= ul;

’

aa)

1

95 {

96

HEMKER and DE ZEEUW

bristol algol68 text PWH/15/12/83 2

interpolation: quadratic on finer grids

proc sqr int pol = (net net) net :
if int 11 = 1 lwb net, 12 = 2 lwb net,
bl = 1 upb net, b2 = 2 upb net;
odd (b1-11) “or odd (b2-12
then 1lin int pol (net)
else int 111 = 2%11, 112 = 2%12;
heap [111:2%b1,112:2%b2] real fine;

int 33, Jps
real x1, x2, x3, y1, y2, y3, 21, z2, 23, yy2, yy3, 222, zz3;
ref [] real wui= net[11,€12], fi= fine[l11,];
fif112):= x1:= uif12); jj:= 112+41;
for j from 12+1 by 2 to b2-1
do x2:= uiljl; x3:= uilj+T];

fi033233+3] :=C (3%(x1 + 2%x2) - x3)/8, x2,

(=x1 + 3%(2%#x2 + x3))/8, x3);
33 +3= 4; x1:= x3

|S’I8
3 -

i1 from 1141 by 2 to bi-1

do ref [] real uim= net[ii-1,@12], uii= net[ii ,812],
uip= net[ii+1,012];

ref [,] real finei = fine[2*ii-1:2%ii+2,0112];

x3:= uim{12] /8;
y3:= (yy3:= uii{12])/4;
z3:= (2z3:= uip{l2])/8;
fineil,112]:= (3%*(x3+y3) --z3, yy3, 3*(y3+z3) - x3, zz3);

for 3j from 1241 by 2 to b2-1

do Jp:= ji+1; x1:= x3; yli= y3; zl:= 23;
x2:= uiml 331 74; x3:= uim(jpl /8;
ya:= (yy2:= uiil3jl)/8; y3:= (yy3:= uiiljp])/u;
z2:= (zz2:= ulpljjl)/4; 2z3:= (223:= uipljpl)/8;

fineil,2%3jj~1:2%3jj+2]:=
((2%(x2+y1)~-z1+y2-x3,
2% (x2+y2)-x1+y1-21,
3*(x3+y2)-z1,
3%(x3+y3)-23),
(2%(y1+4y2)-x1+x2-x3, yy2,
2%(y2+y3)-z1+z2-23, yy3),
(3%(z14y2)-x3,
2% (y2+22)-x3+y3-23,

2#(z2+y3)~x3+y2-21,
3#*(z3+y3)-x3),
(3%(z1+22)-23, 2z2, 3%(z3+z2)-z1, zz3))
od od;
fine
i1

MULTIGRID LINEAR SYSTEM SOLVERS

bristol algol68 text

PWH/15/12/83

restriction: transposed linear interpolation

proc 1lin weight = (net ffi) net
11 = (1 lwb ffi) over 2, ul
12 = (2 lwb ffi) over 2, u2
heap [11:u1,12:u2] real fco;

begin int

int ti,tk,tkp;
real ffb,ffd,ffe;

zero feoll1,];
for i from 11 to ul

do ti:= i+1; feoli+1,121:= O;

for k from 12 to wu2

-1

-1

(1 upb i)
(2 upb ffi)

do tk:z kek; tkp:z tk+2; ffe:s ffilti+1,tk+1];

feoli ,k+1l+:= ffe+(ffbi= ffilti

S tk+1]

feoli+1,k] := ffe+(ffd:= ffilti+1,tk]

((feoli L,k J+:= ffd+ffb)¥*:=0.5)+:=

od

((feoli ,u2 J+:= ffd
od

for k from 12 to wu2

do tk:i= k+k; tkp:= tk+2
fecolul,k+1]+:=

((feolul ,k l+:= ffb

od ;
(feolul ,u2]
fco

end ;

residual evaluation

proc

begin int 11= 1 1lwb u, 12=

[]

R
-
w

ul= 1 upb u, u2=
heap [11:u1,12:u2] real

ref [] real uim:= u(11,€12], ui, uip:= ull1,012];

for i from 11 to ul
do (uiz= uip; i = utl !

m should contain zeroes !
s[i,812]1, fi =

ref [] real si

residual = (netmat m,

-1

frif ¢l

T feoli+1,u2] := ffd:= ffilti+1,tkp 1;
#::0.5)+:=

.
H
H

)
)
’

tk]

il ti,2%u2]

(ffb:= ffi[2%ul,tk+1]);
Y*:20.5)+:= ffi[2%u1,

tkl

#:20.5)+:= ffi[2%u1,2%u2];

2 lwb u,
2 upb u;

33

skip

¢

net u,f) net :

t uip:= uli+1,0812]);
where the matrix does not define the netmat m,

ref [,] real mi - m(i,012,8-3];

int Jm:= 12, jj, Jp:i= 12;

for j from 12 to

u2

fli,812];

do (3ji= Jps j=u2 ! skip ! jper= 1);

ref [] real mi

siljjl:= fi033] = (mij(-3]1%uim{ 3] + mij(-2]%uimljp] +
+ mijl 01%ui [33) + mijl 11%ui [jpl +

mij(-1J%ui [jm]
mijl 21*%uipl jm]

jm o= 33
uim:= ui

[’

J = mil3j,e-33;

+ mijl 3)%uiplijl);

#

2,

2;

3

97

HEMKER and DE ZEEUW

bristol algol68 text

coarse grid operator construction

proc rap = (netmat afi) netmat

begin int 11 = (1 lwb afi)

12 = (2 1wb afi)
heap [11:u1,12:u2,-3:3]

real q= 0.25;
int ti,tip,tk,tkp;

over

[1:3,1:3,-3:3] real fine;

ref [] real

= fine(1,1,6-3], b

.

2, ul
2, u2
aco;

[ThT)

PWH/15/12/83

(1 upb afi)
(2 upb afi)

finel1,2,8-31, ¢

a = =
d = fine[2,1,6-3], e = fine(2,2,6-3], f
g = =

fine(3,1,€-3], h

aa =zal 0], ab
ba =b[-11, bd
eb =ze[~1], ce
da =d[-3], db
eb =zel-3], ec

fc =f[-3], fe
gd =g[-3], ge

he =h[-3], hf
if =j0-31, jh

orientation:

aco = coarse

=al 1], ad
=b[0], be
=zc[0], ce
=zd[(-2], dd
ze[-2], ed

ef

=f[-1], ff
=gl-2], gg
=h[-2], hg
=j[‘1]: 33

=al 3],
=bl 11,
=C[2]|
=d[0],
ze[-1],
=el 11,
=f[0],
=gl 0],
=h(-1],
=il 013

i-1 1

€ o= vt em v e s o
n

the slice [1,J,] corresponds to the coefficients in equation (i,3);

R = O = W

I NG

EE
NG|

Coom v o= O

bd
cf
de
ee
eg
fh
gh
hh

fine(3,2,6-31, j

=b[
=c
=4[
ze[
zel
=f[
=gl
:h[

noun

2],
31,
11,
ol,
2],
2],
11,
ol,

over 2;

be
dg

eh
£]

hj

finel1,3,8-3],
fine(2, 3,8-3],
fine[3,3,€-3];

=b[31,
=d[31,

el 3],
fl 31,

=h[1]1

the slice [,,k] corresponds to matrix diagonals as follows:

[,,=31: n

[,,-2] : n-e

(=11 : w

(,,b 01 : p (the main diagonal)
(o 11 : e

[,y 2] 2 s=w

[,y 37 : s

the difference star:

-2

MULTIGRID LINEAR SYSTEM SOLVERS

bristol algol68 text PWH/15/12/83

zero acol 11, ,];
for 1 from 11 to ul-1

do tiz= i+i; tip:= tis+2;

zero acoli+1,12,1;

for k from 12 to u2-1

do tki= k+k; tkpi= tk+2;
fine[1:3,1:3,]):= afilti:tip,tk:tkp,];
ref [] real a = acoli ,k ,6-3],

c = acoli ,k+1,€-31],
g = acoli+1,k ,6-31,
j = acoli+1,k+1,8-31;

#aa# ((al 0)+:= (ab+ba+ad+da)¥*2+ bb+dd+bd+ddb)*:=q)+:=aa;
#ce#t el 0]+:t= (ce+ec+cb+be)¥*2+ ee+bbsbesebref+fe;
#gg# gl 0)+:z (ge+eg+gd+dg)®2+ ee+dd+de+ed+eh+he;

#35# 30 01 := fhenf;

#ac#(al 1]+:= (ab+bc)*2 + bb+be+db+de)*:=q;

#ca#(c[-11+:= (ba+cb)*2 + bb+eb+bd+ed)*:=q;

#ag#(al 31+:= (ad+dg)*2 + dd+bd+de+be)*:=q;

#gaf# (g[~31+:= (da+gd)*2 + dd+dbred+eb)*:=q;

#ge#(gl-2]1 := (ge+ec)*2 + ee+he+de+hf+db+ef+eb)¥*:=q;
#eg#(cl 2] := (eg+ce)*2 + ee+reh+ed+fh+bd+fe+be)*:=q;
#gi# gl 1] := eh+hf+ef;

#jg# j[-1] := he+fh+fe;

#ej# el 3] := eh+ef+fh;

#je# 3[-3] := he+fe+hf

2

fine[1:3,1,]:= afilti:tip,tkp,];
ref (] real a = acoli ,u2,6-3],
g = aco[i+1,u2,8-3];

#aa# ((al 0J+:= (ad+da)*2 + dd)¥*:= q)+:=aa;
#gg# gl 0J+:= (gd+dg)®*2 + dd;
#gaf#t(g{~-3]1+:= (gd+da)*2 + dd)*:=q;
#ag#(al 3J+:= (ad+dg)®*2 + dd)*:=q;

gl~21 := gl 11:= 0.0
od ;

for k from 12 to wu2-1
do tki= k+k; tkpi= tk+2;
fine[1,1:3,):= afiltip,tk:tkp,];
ref [] real a = acolul,k ,8-3],
¢ = aco[ul,k+1,8~31;
#aa#((al 0]+:= (ab+ba)¥2 + bb)¥:i= q)+:=aa;
#ecc# c[0J+:= (cb+bc)®2 + bb;
#ca#(c[~1]J+:= (cb+ba)¥*2 + bb)¥*:=q;
#ac#(al 1]+:= (ab+bc)®*2 + bb)*:=q;
el 2] := e[3):= 0.0

od
#aa# (acolul,u2,0]*:=q)+:=zafi[2%u1,2%u2,0];
aco

5

99

100 HEMKER and DE ZEEUW
bristol algolb8 text PWH/15/12/83 6
point relaxation procedure
roc pgs relax = (ref netmat dec, netmat m, net u,f) void :
begin # point gauss seidel (pgs) #
int 11:= 1 1lwb u, ul:= 1 upb u, startl, stepl, stopt,
12:= 2 lwb u, u2:= 2 upb u, start2, step2, stop2;
to (symmetric ! 2 ! 1)
do (backward ! startl:= ul; stepli= -1; stopl:= 11
! startl:= 11; stepl:= 1; stopl:= ul);
(reverse ! start2:=z u2; step2:z =1; stop2:=z 12
! start2:= 12; step2:= 1; stop2:= u2);
for i from startl by stepl to stop?
do ref [1 real fiz f[i,012], uim= u[(i>111i-111),612],
ui= uli,€12], uip= ul(i<ulti+11i),0123;
ref [,] real mi= m[i,012,6-3];
for Jj from start2 by step2 to stop2
do int” jm= (§>1213-T13), jp= (G<u2lj+11j);
ref (] real mij = mi(j,8-3);
uiljl:= (mijl=31*uim(jJ+mij(-21%uinml jpl+
mijl-11%ui [jm] - filjlemijl 11%ui [jpl+
mijl 2]%uipljml+mijl 31%uipljl)/ -mijl O]
od
oo
(symmetric! reverse:=z not reverse; backward:z not backward)
od
end ;5
line relaxation procedure
proc 1lgs relax = (ref netmat dec, netmat m, net u,f) void :
begin # line gauss seidel (lgs) #
int st = (zebra ! 21 1);
int 11:= 1 lwb u, ul:i= 1 upb u, start, step, stop;
proc line relax = (ref [] real um,u,up,f,
ref {,] real m) void :
begin ref [] real b= m(, 11, n = m(,-3], ne= m[,-21,
a= m{, 0], s = m(, 3], sw= m[, 2],
= m(1-1]’
#not existing matrix elements: c¢[1]= b(kl= 0 11#
int 1= lwb f, k= upb f; [1l:k] real aa;
int i:=1; real g:= 0, p; aall T:= 1.0;
for J from 1 to
do aaljl:= aljl = b[i]‘ (p:=cljl/aalil);
g = £§1 - n(j1%uml] -
swl j1%up(i] - s(jl1*up(j] - g*p;
(j<k t g =-3= nel j1%uml j+11);
ul jle= g5 1i:=
o 3
Ejfromkgy_d to 1
do u [jJ:= g := C ulj] - bl jl1*g)/aalj] od
end ;

MULTIGRID LINEAR SYSTEM SOLVERS

bristol algol68 text

for
do

R

end ;
1illu

proc
begin

k to
(backward ! start := "ul; step

(
t(
#(

for
do

od

od ;
(symmetric !

illu relax =

int

(" netmat (dec)

[11:u

roc

(ref

for
for
for

)3

rh:=

s011(
for
do

od ;

dulut,

for
do

R

b
o
3

|

Iad
o
3

12

PWH/15/12/83

(symmetric or zebra ! 2 ! 1)
iz -st; stop := 11

! start := 11; step := st; stop := ul);

zebra
symmetric /=
symmetric ! even-odd ! odd-even) half step #);

odd (k+start) ! start+:= sign step)

i from start by step to stop
line relax (ul (1>11!i-111),T, uli,],
ul (icuttis1tid,], £i,1, mli,,8-31)

backward:= not backward)

relaxation procedure #

(ref netmat dec, netmat jac, net
11= 1 lwb u , ul= 1 upb u, 12=

2 lwb u, u2= 2 upb u;
netmat (nil) ! illudec (jac,dec));
du,rh;

1,12:u2] real

soll =
{1 real

(int i, net r) void :
1 = dec(i,,-1], d = dec(i,,0],
u = deeli, , 1], z=r [i, 1;
J from 12+1 to u2 do z[jle:= 1[jI*2[j-1] od
j from 12 to u2 do z[jl*:= d[j] od
j u2-1 by -1 %o 12

do z[jl+:i= uljl*z(j+1] od

residual (jac,u,f);
11,rh);

i from 11+1 to ul

for j from 12 to u2

do rhli,jl-:= jacli,j,=-31%rh(i=1,3 1
- (j<u2 ! jacli,j,-2]%rhl[i-1,j+1]

-t

0.0)
od ;
soll(i,rh)

l:=rhfu1,];

i from ul-1 by -1 to 11

for 3 from 12 to uZ

do duli,3] := jacli,j, 31%duli+1,j]
- (12 ' jacli,j, 2]*duli+1,j-1] !¢

-+

0.0)
od ;
soll(i,du);

for j from 12 to u2

do duli,37] := rh(1,j] - duli,j] od

i from 11 to ul do
j from 12 to u2 do
uli;3l+:= duli,;]

od

Blbiyal ’709#(
Centrumvnos i 12 en Informatice

u,f) void

101

bristol algol68 text PWH/15/12/83 8

illu decomposition procedure

proc 1illudec = (netmat jac, ref netmat decomp) void :
begin int 11= 1 lwb jac, ul= 1 upb jac,
12= 2 lwb jac, u2= 2 upb jac;
int ip;
real dd,1l1,ii,1 dinv u;
[12:u2,~1:+1] real d;
[12:u2,-2:42) real dinv;
[12:u2,-1:42] real 1 dinv;
heap [11:u1,12:u2,=1:+1] real dec;

dl12:u2,-1:+1]:= jac[l1,12:u2,-1:41];
dd:= dec[11,12,0]:= 1.0/d[12,0];
for j from 12 to u2-1
do dec[11,j ,+1]:= -d[j ,+11%dd;
dec[11,3+1,~1]:= 1l:=z~d[j+1,-11%dd;
dec[11,j+1, 0l:= dd:= 1.0/¢ d[j+1, 0] + dl[j,1]1%11
od

~

for i from 11 to ul=l
do ip:= i+l T
dinviu2,0):= ii:= dec[i,u2,0];
for j from u2-1 by -1 to 12
do dinvl 3,0):= ii:% decli, j,0] +
ii * dec[i,j,1]*dec[i,j+1,-1]

[

H

for k to 2 do

for j from u2 by -1 to 12+k do

dinv(j ,-kl:= dinv[j » 1-kJ*dec[1i, j-k+1,-1];
dinvlj~k, kl:= dinv[j~k+1,k=1 J*dec[i, j=k ,+1]
od ;

|

for k from -1 to 2 do

for j from 12+(k=-1!1110) to u2-(k=2!12!1)

do” 1dinvlj ,kl:= jac(ip,j \=3]%dinv[j ,k] +
jaclip,j ,~21*dinv[j+1,k-1]

od 3
(k<1t
1 dinv[u2,k]:= jac[ip,u2,-3]%dinv[u2 ,k])
od
for k from -1 to 1 do

for j from 12+(k=-11110) %o u2-(k=11110)
do 1 dinv u := 1 dinv(j,k T%jacl[i,j+k ,31;

(j+k<u2
1 dinv u+:i= 1 dinv(j,k+1]%*jac[i, j+k+1,2])
dlj,k] := jaelip,j,k] - 1 dinv u
od 3

dd:= dec(ip,12,0]:= 1.0/d[12,0];
for j from 12 to wu2-1
do declip,j ,+11:= -d[j ,+1]%dd;
declip,j+1,-1]t= 1l:=z=d[j+1,-11%dd;
declip,j+1, 0J:= dd:= 1.0/(d[j+1, 0] + dlj,11%11)
od od ;
decomp:= dec

MULTIGRID LINEAR SYSTEM SOLVERS
bristol algol68 text PWH/15/12/83 9
linear algebra solution procedure

proc mgm = (ref [] netmat 1lh, ref [] net uh,fh,
int itmax,p,q,s,t,
proc (ref netmat , netmat , net , net) void relax,
ref [] netmat decomp, ref int itused,
proc (int , netmat , net , net) bool goon mgm,
proc (int , string) void fail) void :
begin int 1= upb uh, r = s;
ref [] netmat 1lhdec =
(decomp z=: ref [] netmat (nil)
! loc [0:1] netmat ! decomp);

roc mg = (int 1) void :
one multigrid cycle on level 1
E 1 =0
then relax(lhdec[0],1h[0],un(0],fh(0]1)
else # pre-relaxation #
to p do relax(lhdec[1],1n{1],un[1],fh(1]) od ;

coarse grid correction
fh{1-1]:= lin weight(residual (1h[1],uh[1],fh[11));
zero uh{1l-1];
to (1=1ttts) do mg (1-1) od ;
uh(l] +:= lin int pol (uh[1l-11);

post-relaxation
to q do relax(lhdec(1],1h[1],un[1],fh(1]) od
o
int err = ## check consistency data #
(1wb uh /=0 or 1lwb fh /=0 or 1lwb lh /=0
or upb fh /=1 or upb lh /= 11! 1
1: netmat 11 = 1h(1];

3 1wb 11 /=-3 or 3 upb 11 /= 3 12
t: net ff = fh(1];
int 11 := 1 lwb ff, ul := 1 upb ff,
12 := 2 1lwb ff, u2 := 2 upb ff;
11 /= 1 1wb 11 or ul /= 1upb 11 or
12 /=2 1wb 11 or wu2 /= 2 upb 11 '3
t: int tpl = 2%¥)

17 mod tpl /=0 or ul mod tpl/=0 or

12 mod tpl /=0 or u2 mod tpl/=0
1: 11:= 11 over tpl; ul:= ul over tpl;
12:= 12 over tpl; u2:= u2 over tpl;
(itused <= 0
! uh{0]:= zero heap [11:u1,12:u2] real
); S(=0_0_£s>3 ﬁt(:O
t: itmax<0 or p<0 or q<0
t: 1lwb lhdec /= 0 or upb lhdec /=1
t 0)
(err>0 ! fail (err," mgm "));

=

~N o

if itused < 0 # no coarse operators available #
then # create galerkin approximations #
for i from 1 by -1 to 1
do 1h[i-1]:= rap(1h[il);
fhli-1]:= 1lin weight(fh[i])
od ; itused:=

103

A S

e

e TSRS

|

HEMKER and DE ZEEUW

bristol algol68 text PWH/15/12/83 10

if itused = 0 # no initial estimate available #
then for i from 0 to 1

do lhdec[il:= nil od ;

apply full multigrid

to t do mg(0) od ;

for k to 1-1

do uh(k]:= sqr int pol (unl[k-11);

to r do mg (k) od

od ; uh[1]:= sqr int pol (uh[1-11);

goon mgm (itused,1lh[1],un(1],fh[1])
fi ;
to itmax # multigrid iteration #
while mg (1); itused +:= 1;

goon mgm (itused, 1h[1], uh[1], fh{1])

do skip od

black box solution procedure

proc solve sys =(int 1, ref netmat 1h, ref net uh,fh) void :
solves the linear system lh¥uh = fh
([0:1] netmat matrix; [0:1] net rhs,solution;
matrix{1]:= 1h; rhs{1l:= fh;
mgm(matrix,solution,rhs,mgitmax,mgp,mgq,mgs,mgt ,mgrelax,
nil , loc int := -1, mgm goon, fail);

uh:= solution(1]);
default global parameters

bool symmetric:

false , backward:= false

reverse := false , zebra false ;
int mgitmax := 8,
mgp : = y mgqi= 1,

mgs:= 1 , mgt:i= 1;
ro¢c (ref netmat , netmat , net , net) void
mgrelax := illu relax;

proc mgm goon:= (int itnum, netmat lh, net uh,fh) bool :
true ;
roc fail := (int n,[] char text) void :

(print((newline,text,n,newline)); stop);

#texample program #
int 1:= 4;

netmat matrix

:= loc [0:2%#1,0:2%%#1,-3:3] real
net solution, rhs :

loc [0:2#%],0:2%%]] real

read ((matrix,rhs));
solve sys (1l,matrix,solution,rhs);
print(solution)

end

- 10 =

MULTIGRID LINEAR SYSTEM SOLVERS

6.2 Appendix 2

In this second appendix we give the user interfaces of the FORTRAN
subroutines MGD1V (or MGD1S) and MGDS5V (or MGD5S). We include also
examples of a calling program. A tape with the complete programs can
be obtained from the authors.

BRISTOL FORTRAN COMMENTS PWH/19/12/83 1

SUBROUTINE MGD1V(A,U,RHS,UB,US,TEMP,LEVELS,NXC,NYC,NXF,NYF, NF,NM,
.ISTART,MAXIT, TOL, IOUT,RESNO)

COMMON /POI/ NGP(12) ,NGRIDX(12),NGRIDY(12)

COMMON /CPU/ CP(9)

DIMENSION A(NM,7) ,U(NM) ,UB(NF) ,RHS (NM) ,US (NM) , TEMP (NXF), IOUT (5)

PURPOSE

THIS PROGRAM SOLVES A USER PROVIDED 7-POINT DIFFERENCE
EQUATION ON A RECTANGULAR GRID.

MATHEMATICAL METHOD

SAWTOOTH MULTIGRID CYCLING
(I.E. ONE SMOOTHING-SWEEP AFTER EACH COARSE GRID CORRECTION)
WITH SMOOTHING BY INCOMPLETE CROUT-DECOMPOSITION,

7-POINT PROLONGATION AND RESTRICTION,

GALERKIN APPROXIMATION OF COARSE GRID MATRICES.

R TR

felalald PARAMETERS HENK

000000000 N0O000000O0O0

*

D L R e s ad

(INPUT DATA - SIZE OF PROBLEM)

LEVELS NUMBER OF LEVELS IN MULTIGRID METHOD
SHOULD BE .GE.2 AND .LE.1l2

NXC, NYC NUMBER OF VERTICAL, HORIZONTAL GRID-LINES
ON COARSEST GRID

NXF, NYF NUMBER OF VERTICAL, HORIZONTAL GRID-LINES
ON FINEST GRID

NF NUMBER OF GRID-POINTS OF FINEST GRID

NM NUMBER OF GRID-POINTS ON ALL GRIDS TOGETHER

NOTE THAT THE FOLLOWING RELATIONS SHOULD HOLD,

NE=NXF*NYF
NXF= (NXC-1)* (2** (LEVELS-1))+1
NYF= (NYC-1)* (2** (LEVELS-1)) +1

THE PROGRAM CHECKS THE CONSISTENCY OF THESE DATA

EXAMPLES

LEVELS = 2 3 4 S 6 7
NXC = 3 3 3 3 3 3
NYC = 3 3 3 3 3 3
NXF = 5 9 17 33 65 129
NYF = 5 9 17 33 65 129
NF = 25 81 289 1089 4225 16641
NM = 34 115 404 1493 5718 22359
LEVELS = 2 3 4) 6 7
NXC = 5 S 5 S 5 5
NYC = 5 5 5 5 5)
NXF = 9 17 33 65 129 257
NYF = 9 17 33 65 129 257
NF = 81 289 1689 4225 16641 66049
NM = 186 395 1484 5709 22350 88399

0000OANOONONNONNNNN0NNNNN0NN0NONN0000NONN

105

106

BRISTOL FORTRAN

NO0O0O0O0NON00NNO0ONNNNNO0N000NO0NONO0N0OO0NN0ODOO0OOONODOO0O0O

ISTART

MAXIT

TOL

10UT

HEMKER and DE ZEEUW

COMMENTS PWH/19/12/83 2

(INPUT)

=1 IF THE USER PROVIDES AN INITIAL ESTIMATE
OF THE SOLUTION IN UB

=@ IF NO INITIAL ESTIMATE IS PROVIDED IN UB

(INPUT)
MAXIMUM NUMBER OF MULTIGRID ITERATIONS

(INPUT)

TOLERANCE DESIRED BY THE USER, TOL IS A BOUND OF THE
L2-NORM OF THE RESIDUAL

REMARK IF EITHER MAXIT ITERATIONS OR THE TOLERANCE HAVE
—————— BEEN ACHIEVED,THEN MULTIGRID CYCLING IS STOPPED.

(INPUT)
INTEGER ARRAY DIMENSIONED AS IOUT(5) THAT CONTROLS
THE AMOUNT OF OUTPUT DESIRED BY THE USER.
SMALLER IOUT-VALUES MEAN LESS OUTPUT,
POSSIBLE VALUES ARE ,
IOUT(1)=1 CONFIRMATION OF INPUT DATA
@ NONE
IOUT (2)=2 MATRICES AND RIGHT-HAND SIDES ON ALL LEVELS
1 MATRIX AND RIGHT-HAND SIDE ON HIGHEST LEVEL
@ NONE
IOUT(3)=2 MATRIX-DECOMPOSITIONS ON ALL LEVELS
1 MATRIX-DECOMPOSITION ON HIGHEST LEVEL
¢ NONE
IOUT(4)=3 NORMS OF RESIDUALS, REDUCTION FACTORS,
FINAL RESIDUAL, FINAL SOLUTION
2 NORMS OF RESIDUALS, REDUCTION FACTORS,
FINAL RESIDUAL
1 NORMS OF RESIDUALS, REDUCTION FACTORS
¢ NONE
1 THE TIME SPENT IN VARIOUS SUBROUTINES
¢ NONE
REMARK CLOCK ROUTINES ARE NOT STANDARD
—————— FORTRAN. TO OBTAIN TIMINGS THE USER
SHOULD ADAPT THE SUBROUTINE TIMING,
IT SHOULD DELIVER THE CPU-TIME ELAPSED.

I0UT(5)=

(INPUT)
REAL ARRAY DIMENSIONED AS A(NM,7)
THE USER HAS TO INITIALIZE A(1,l),..,A(1,7)

A(K,i) A(K:7)

A(NF,1),..,A(NF,7)
WITH THE MATRIX CORRESPONDING TO THE FINEST GRID.
THE ORDERING OF THE POINTS IN THE GRID IS AS FOLLOWS
THE SUBSCRIPT K=(J-1)*NXF+I CORRESPONDS TO THE POINT

(X,Y) = (I*H , J*H)
X Y
I=1l,...,NXF J=1,...,NYF

MULTIGRID LINEAR SYSTEM SOLVERS 107

BRISTOL FORTRAN COMMENTS PWH/19/12/83 3

THE 7-POINT DIFFERENCE MOLECULE AT THE POINT WITH
SUBSCRIPT K= (J-1)*NXF+I IS POSITIONED IN THE X,Y-PLANE

AS FOLLOWS

Y,J

+

+

+ A(K,6) A(K,7)

+ . .

+ A(K,3) A(K,4) A(K,5)
+ N . .

+ A(K,1l) a(K,2)
+ . .

+

O+ + + + + + + + + + + + + + + X, 1

IMPORTANT THE USER HAS TO PROVIDE THE MATRIX A ONLY ON THE FINEST

--------- GRID.

IMPORTANT THE USER HAS TO TAKE CARE THAT PARTS OF THE MOLECULES

--------- OUTSIDE THE DOMAIN ARE INITIALIZED TO ZERO, OTHERWISE
WRONG RESULTS ARE PRODUCED.

IMPORTANT THE COEFFICIENT MATRIX A IS OVERWRITTEN BY THE PROGRAM.

--------- AFTER A CALL OF MGD1V (DECOMP),A CONTAINS THE INCOMPLETE
CROUT DECOMPOSITIONS.

RHS (INPUT)

REAL ARRAY DIMENSIONED AS RHS (NM)

THE USER HAS TO INITIALIZE RHS(l),...,RHS(NF) WITH

THE RIGHT-HAND SIDE OF THE EQUATION.

THE ORDERING IS THE SAME AS INDICATED FOR ARRAY A.
IMPORTANT THE USER HAS TO PROVIDE THE RIGHT-HAND SIDE OF THE
————————— DISCRETIZED EQUATION ONLY ON THE FINEST GRID

9] (OUTPUT)
REAL ARRAY DIMENSIONED AS U(NM)
CONTAINS THE (APPROXIMATE) NUMERICAL SOLUTION AFTER A
CALL OF MGD1vV.

UB (WORKSPACE/INPUT)
REAL ARRAY DIMENSIONED AS UB(NF)
IS USED AS A SCRATCH ARRAY. 1IF ISTART=1 THEN UB(l),...
..,UB(NF) SHOULD CONTAIN AN INITIAL ESTIMATE OF THE
SOLUTION PROVIDED BY THE USER.
AFTER A CALL OF MGD1V, UB CONTAINS THE RESIDUAL OF THE
THE NUMERICAL SOLUTION.

us (WORKSPACE)
REAL ARRAY DIMENSIONED AS US (NM)
IS USED AS A SCRATCH ARRAY

TEMP (WORKSPACE)
REAL ARRAY DIMENSIONED AS TEMP (NXF)
IS USED AS A (SMALL) SCRATCH ARRAY.
IF THE SCALAR VERSION OF SUBROUTINE SOLVE (DENOTED BY
COMMENT CARDS BEGINNING WITH CSC) IS USED THEN IT IS
SUFFICIENT TO DIMENSION TEMP AS TEMP(l).

RESNO (OUTPUT)
THIS VARIABLE CONTAINS THE L2-NORM OF THE RESIDUAL AT
THE END OF EXECUTION OF MGD1V.

000N0000O0NNNNNNNONNNONNNNONNONNONANNNNNNONNOOOOOCNOOOOOOONNONOONOANNN

i
i

2%

[— N R e

lo8 HEMKER and DE ZEEUW

BRISTOL FORTRAN COMMENTS PWH/19/12/83 4

G e e o e e e
C THIS IS AN EXAMPLE OF A MAIN PROGRAM USING MGDlV

G m e e e
C

C ACTUAL USER PROVIDED DIMENSION STATEMENTS,

Cc

DIMENSION A(88399,7),RHS(88399),U(88399),US(88399),UB(66@49),
.TEMP(257),I0UT(5)

USER DATA STATEMENTS,

nno

DATA NXC,NYC,NXF,NYF/5,5,257,257/

DATA LEVELS,NM,NF/7,88399,66049/

DATA MAXIT,ISTART/10,8/

DATA IOUT(1l),IOUT(2),I0UT(3),I0UT(4),I0UT(5)/1,0,06,1,1/

PROBLEM SET UP

[eXeXKe]

CALL MATRHS (A,RHS,NM, NXF,NYF)
fe R L R L R T R R T T T
C MATRHS IS A SUBROUTINE WHICH FILLS THE MATRIX AND THE RIGHT-HAND
C SIDE, IT DOES NOT BELONG TO THE PACKAGE AND IS ONLY AN EXAMPLE.

Chhkhdhkhhh kR Rk kAR kR kAR KRR KRR AR KRN KRR AR R AR Ik ke khhhhhkhhhhkkkhkhhhdhh

c

C SOLUTION OF THE LINEAR SYSTEM

C
CALL MGDlV(A,U,RHS,UB,US, TEMP,LEVELS,NXC,NYC, NXF,NYF,NF,NM,
. ISTART,MAXIT,d.d,I0UT,RESNO)

C
Cc POSSIBLE REFINEMENT OF THE SOLUTION, 5 MORE ITERATIONS
C
C CALL CYCLES(A,U,RHS,UB,US,TEMP,LEVELS,NXF,NF,NM,1,5,8.06,I00T,
C .RESNO)
C
C POSSIBLE REFINEMENT UNTIL RESIDUAL NORM .LT. 1.0QE-12
C
C CALL CYCLES(A,U,RHS,UB,US,TEMP,LEVELS,NXF,NF,NM,1,30,1.0E-12,100T,
C -RESNO)
C
STOP
END

- 4 -

MULTIGRID LINEAR SYSTEM SOLVERS 109

BRISTOL FORTRAN COMMENTS PWH/19/12/83 5

SUBROUTINE MGD5V (A,V,RHS,VB,LDU,WORK,LEVELS ,NXC,NYC, NXF,NYF,
NF,NM, ISTART ,MAXIT,TOL, IOUT RESNO)

COMMON /POL/ NGP(12) NGRIDX(lZ) NGRIDY(lZ)

COMMON /CPU/ CP(18)

REAL LDU

DIMENSION A(NM,7),V(NM),VB(NM),RHS (NM) ,LDU(NM,3),

. WORK (NXF,9) ,I0UT(5)

THIS PROGRAM SOLVES A USER PROVIDED 7-POINT DIFFERENCE
EQUATION ON A RECTANGULAR GRID.

MATHEMATICAL METHOD

SAWTOOTH MULTIGRID CYCLING
(I.E. ONE SMOOTHING-SWEEP AFTER EACH COARSE GRID CORRECTION)
WITH SMOOTHING BY INCOMPLETE LINE LU-DECOMPOSITION,

7-POINT PROLONGATION AND RESTRICTION,

GALERKIN APPROXIMATION OF COARSE GRID MATRICES.

LA AR R EE SR SRR R s R R RS R R R R R R R

il PARAMETERS fallolald

NOO0O0OOOONON0NO0O0NO0N00O0000

*
*

AR EEEE SRR RS RS ER R RS R R R R R R R T R R R R TR T

]
1
1

(INPUT DATA - SIZE OF PROBLEM)

LEVELS NUMBER OF LEVELS IN MULTIGRID METHOD
SHOULD BE .GE.3 AND .LE.12
NXC,NYC NUMBER OF VERTICAL, HORIZONTAL GRID-LINES
ON COARSEST GRID, NXC SHOULD BE .GE.S
AND NYC SHOULD BE .GE.3
NXF,NYF NUMBER OF VERTICAL, HORIZONTAL GRID-LINES
ON FINEST GRID
NF NUMBER OF GRID-POINTS OF FINEST GRID
NM NUMBER OF GRID-POINTS ON ALL GRIDS TOGETHER

SEE COMMENTS IN MGD1lV FOR FURTHER DETAILS.

ISTART (INPUT)
MAXIT (INPUT)
TOL (INPUT)
I00T (INPUT)
A (INPUT)
RHS (INPUT)

THESE INPUT PARAMETERS HAVE THE SAME MEANING AS IN MGD1V

THE ONLY DIFFERENCE IS THAT THE ARRAY A WILL NEVER BE
OVERWRITTEN BY MGD5V.

LDU (OUTPUT)
REAL ARRAY DIMENSIONED AS LDU(NM,3)
LDU CONTAINS DECOMPOSITIONS OF ALL TRIDIAGONAL BLOCKS D
J

DONO000OON0QO0NONN0 000000000000

110 HEMKER and DE ZEEUW

BRISTOL FORTRAN COMMENTS PWH/19/12/83 6

an
1
]
1
<

(INPUT/OUTPUT)

REAL ARRAY DIMENSIONED AS V(NM)

IF ISTART=1 THEN V(1l),...,V(NF) SHOULD CONTAIN AN
INITIAL ESTIMATE OF THE SOLUTION PROVIDED BY THE USER.
IF ISTART=@ THEN V IS INITIALIZED TO ZERO. (SUBR. PREPAR)
AFTER A CALL OF MGD5V, V CONTAINS THE (APPROXIMATE)
NUMERICAL SOLUTION.

VB (WORKSPACE/OUTPUT)
REAL ARRAY DIMENSIONED AS VB (NF)
AFTER A CALL OF MGD5V, VB CONTAINS THE RESIDUAL OF THE
NUMERICAL SOLUTION V.

WORK (WORKSPACE)
REAL ARRAY DIMENSIONED AS WORK(NXF,9)
IS USED AS A (SMALL) SCRATCH ARRAY

RESNO (OUTPUT)
THIS VARIABLE CONTAINS THE L2~NORM OF THE RESIDUAL AT
THE END OF EXECUTION OF MGDS5V.

[eXeReXeReReXeReReReXe e NeKe e oo NeNoRo Ne)

oo o e e e e e e e e
c THIS IS AN EXAMPLE OF A MAIN PROGRAM USING MGDSV
o e e e e e e
C ACTUAL USER PROVIDED DIMENSION STATEMENTS,
c

REAL LDU

DIMENSION A(88399,7) ,RHS (88399),V(88399),VB(88399),

.LDU(88399,3) ,WORK(257,9) ,I0UT(5)

C
C USER DATA STATEMENTS,
C

DATA NXC,NYC,NXF,NYF/5,5,257,257/

DATA LEVELS,NM,NF/7,88399,66049/

DATA MAXIT,ISTART/10,8/

DaTA IOUT(l),IOUT(2),IOUT(3),I0U0T(4),I00T(5)/1,0,0,1,1/

c
C PROBLEM SET UP
(o}

CALL MATRHS (A,RHS,NM,NXF,NYF) .
e T T T T T s
C MATRHS IS A SUBROUTINE WHICH FILLS THE MATRIX AND THE RIGHT-HAND
[of SIDE, IT DOES NOT BELONG TO THE PACKAGE AND IS ONLY AN EXAMPLE.

A R L S T T T e e
c

C SOLUTION OF THE LINEAR SYSTEM

C

CALL MGD5V(A,V,RHS,VB,LDU,WORK,LEVELS,
. NXC,NYC,NXF,NYF,NF,NM, ISTART ,MAXIT,@.8,I0UT, RESNO)

C
C POSSIBLE REFINEMENT OF THE SOLUTION, 5 MORE ITERATIONS
C
Cc CALL CYCLES (A,V,RHS,VB,LDU,WORK,LEVELS ,NXF,NF,NM,
C . 1,5,0.8,I00T,RESNO)
C POSSIBLE REFINEMENT ONTIL RESIDUAL NORM .LT. 1.0E-12
C
c CALL CYCLES (A,V,RHS,VB,LDU,WORK, LEVELS ,NXF, NF ,NM,
C . 1,38,1.6E-12,10UT,RESNO)
C
STOP

| END

MULTIGRID LINEAR SYSTEM SOLVERS n1

6.3 Appendix 3

In this appendix we give a full description in FORTRAN of our imple-
mentation of the ILLU-decomposition. First we give a brief description
of that decomposition and the corresponding relaxation sweep. Let the
seven diagonal matrix A correspond with the following molecule:

a az
'q 1\
AN N
N TN
AN i \
PN N v 4
i \; \
a a a '
-———84——~—74p
i s . |
\ i \ |
\ AN i
\\ ! N e - X
N \
\i A
a

\

D, U |
Ly 2 |
3 P3 U3 i
A=L+D+ U= e !
L, D, |

1 1 1 i

D

n n i

i

!

:

-
]

5 2 (1) n corresponds with a; and a,,
i 1 (1) n corresponds with ag, a, and ag,

a u v
"
1

-
]

1 (1) n-1 corresponds with ag and a,.
Then the ILLU-decomposition is defined by L, D, U, with
b, =D,
1 1 -1
D, - tridiag (L, D, U)
3 St B SR B A

ol
]

for § = 2 (1) n.

The tridiagonal matrix D is stored by means of its exact decomposition
L, D, U. (L and U are bidiagonal, D is a main diagonal, the main
diagonals of L and U are equal to one,)

Let u(l) be an approximate solution of Au = f, then an ILLU~relaxation
sweep reads:

Step 1: compute r:= £ - A u(l)

~

Step 2: solve (L4D)D (D+U) v

]
K

Step 3: u(i+l):= u(i) + v.

HEMKER and DE ZEEUW

SUBROUTINE DECOMP(Al,A2,A3,A4,A5,A6,A7,N,M,NM)

INCOMPLETE CROUT-DECOMPOSITION (ILU-DECOMPOSITION) OF THE SEVENDIA
GONAL MATRIX A REPRESENTED BY Al,A2,A3,A4,A5,A6,A7.

A IS OVERWRITTEN BY ITS DECOMPOSITION.

THE MAIN DIAGONAL OF L IS ONE EVERYWHERE, THE OTHER DIAGONALS OF L
ARE STORED IN Al, A2, A3.

THE DIAGONALS OF U ARE STORED IN A4, A5, A6, A7.

M IS THE NUMBER OF GRIDPOINTS IN THE X-DIRECTION,

N IS THE NUMBER OF GRIDPOINTS IN THE Y-DIRECTION,

NM=N*M.

NOTE

THE LOOPS 6, 1@, 20, 38, 40, 50, 68, 400 ARE AUTOMATICALLY
VECTORIZED.
THE LOOPS 5 AND 55 ARE RECURSIVE AND WILL THEREFORE NOT BE
VECTORIZED.

DIMENSION Al (NM),A2(NM),A3(NM) ,A4 (NM) ,AS (NM) ,A6 (NM) ,A7 (NM)
A4J=A4 (1)

DO 5 J=2,M

A3(J)=A3(J) /A4

A4(J)=A4(J)-A3(J)*A5(I-1)

A4J=A4(J)

CONTINUE

DO 6 J=2,M

A6(J) =A6 (J) -A3 (J) *A7 (I-1)

CONTINUE

M1l=M-1

JB=1
JE=M

DO 180 K=2,N

JB=JB+M

JE=JE+M

DO 18 J=JB,JE

A1 (J)=A1(J) /A4 (I-M)
CONTINUE

DO 28 J=JB,JE

A2(J) = (A2(J)-A1(J)*AS5(JI-M)) /A4 (J-M1)
CONTINUE

DO 38 J=JB,JE
A3(J)=A3(J)-AL(J)*A6 (J-M)
CONTINUE

DO 48 J=JB,JE

A4 (J)=A4(J)-A2(J)*A6 (I-M1)-AL (J) *A7 (I-M)
CONTINUE

DO 5@ J=JB,JE
AS(J)=A5(J) -A2(J) *A7 (J-M1)
CONTINUE

A4J=A4 (JB-1)

DO 55 J=JB,JE
A3(J)=A3(J)/A4J

A4 (J)=A4 (J)-A3 (J)*A5(J-1)
A4J=A4 (J)

CONTINUE

DO 68 J=JB,JE

A6 (J) =A6(J) -A3(J)*A7(JI-1)
CONTINUE

CONTINUE

DO 48¢ JJ=1,NM,65535
JJE=(JJ-1) +MIN@ (65535, NM~ (JJ-1))
DO 488 J=JJ,JJE

A4(J)=1.8/A4(J)

112

C
C
C
c
c
[o]
(o]
c
C
c
c
c
c
o)
Cc
Cc
Cc

5

6

10

20

30

49

50

55

6¢

100
C
o4
C

49¢

CONTINUE

RETURN

END

O00ONO00OO0O0O000n

[eNeleKeReNe Koo NeXe e e Ke!

MULTIGRID LINEAR SYSTEM SOLVERS 113

S5UBKUUTINE ILLUDC(A,DIMA,L,D,U,NX,NY,NXY,WORK)

INCOMPLETE LINE LU (ILLU-DECOMPOSITION) OF THE SEVENDIAGONAL

MATRIX
DECOMP

A. A REMAINS INTACT, L D AND U ARE FILLED IN WITH THE
OSITIONS OF
D J = 1(1)NY
J

NX IS THE NUMBER OF GRIDPOINTS IN THE X~DIRECTION,

NY 1§
NXY=NX

INTEGE
REAL L
DIMENS
CALL T
NPOLD=
DO 100
NPNEW=
CALL B

NPOLD=
100 CONTIN
RETURN
END
SUBROU

PERFORI
Dz, DP

THE NUMBER OF GRIDPOINTS IN THE Y-DIRECTION,
*NY

R DIMA

ION A(DIMA,7),L(NXY),D(NXY),U(NXY),WORK(NX,9)
RIDEC(A(L,3),A(1,4),A(1,5),L,D,U0,NX)
1
J=2,NY
NPOLD+NX
LOCKS (A(NPOLD, 1) ,A(NPNEW, 1) ,DIMA,
L (NPOLD) ,D(NPOLD) ,U (NPOLD) ,
L (NPNEW) ,D (NPNEW) ,U (NPNEW) ,NX,
WORK(1,1) ,WORK(l,2) ,WORK(1,3),WORK(1,4) ,WORK(1,5),
WORK(1,6))

NPNEW
UE
TINE TRIDEC(DM,DZ,DP,LJ,DJ,UJ,NX)

MS DECOMPOSITION OF A TRIDIAGONAL MATRIX REPRESENTED BY DM,

THE DECOMPOSITION CONSISTS OF A LOWER TRIANGULAR BIDIAGONAL MATRIX

LJ, AN
MATRIX
NX IS

NOTE

REAL L
DIMENS
DJ(1)=
DJIM1=
DO 10
LI(I)=
DJ(I)=
DJIMl=
10 CONTIN

UPPER TRIANGULAR BIDIAGONAL MATRIX UJ AND AN ONE DIAGONAL
DJ, THE MAIN DIAGONALS OF LJ AND UJ EQUAL ONE.
THE NUMBER OF POINTS IN THE X-DIRECTION.

LOOP 20 IS AUTOMATICALLY VECTORIZED.
LOOP 1@ IS RECURSIVE AND WILL THEREFORE NOT BE VECTORIZED.

J

ION DM (NX) ,DZ (NX) ,DP (NX) ,LJ (NX) ,DJ (NX) ,UJ (NX)
1.8/0z(1)

DI (1)

I=2,NX

-DM(I)*DJIM1

1.0/(DZ(I)+LJI(I)*DP(I-1))

DJ (1)

UE

NX1=NX-1

DO 20
UJ(I)=
20 CONTIN
RETURN
END

I=1,NX1
-DP(I)*DJ(I)
UE

T T e

114 HEMKER and DE ZEEUW

SUBROUTINE BLOCKS(AJM1,AJ,DIMA, LJM1l,DJM1,UJMl, LJ,DJ,UJ,NX,
QM2,QM1,QZE,QPL,QP2, LD)

Gt s e e e e e e e o e o o o o e o e e S . 2 e e
c INCOMPLETE LINE LU DECOMPOSITION (ILLU-DECOMPOSITION) OF J-TH ROW
c OF BLOCKS OF THE SEVENDIAGONAL MATRIX A.
c A IS J TH ROW OF BLOCKS OF A,
c AJM1 IS (J-1) TH ROW OF BLOCKS OF A&,
c LJML, DJM1, UJML ARE (J-1) TH ROWS OF L, D, U WHICH REPRESENT
c BIDIAGONAL MATRICES (MAIN DIAGONALS EQUAL ONE) WHICH PRODUCT IS
C -
c D
c (3-1)
o LJ, DJ, UJ BECOME THE J TH ROWS OF L, D, U AFTER A CALL OF BLOCKS.
c NX IS THE NUMBER OF GRIDPOINTS IN THE X-DIRECTION.
c QM2,0M1,Q2E,QP1,QP2,LD ARE WORK ARRAYS.
c
c NOTE THE LOOPS 1@, 3@, 40, 51, 52, 53, 54, 68, 78, 86 ARE AUTOMA-
c -—-- TICALLY VECTORIZED.
c LOOP 28 IS RECURSIVE AND WILL THEREFORE NOT BE VECTORIZED.
c
oo o o e o e e e e e e e e e e o e e e e e 4 = = " > -

INTEGER DIMA

REAL LJM1,LJ,LD

DIMENSION AJML(DIMA,7),AJ(DIMA,7),LJIML(NX),DJML(NX),UJML (NX),

. LJ (NX) ,DJ (NX) , UJ (NX) ,

. QM2 (NX) ,QML (NX) ,QZE (NX) ,QP1 (NX) ,QP2 (NX) ,

. LD (NX, 4)
G o e e e e e e et e e e e e o e e o o o o e o o e o
c - -1
c FIRST STEP - COMPUTATION OF 5-DIAG(D),
c J-1
c RESULTING DIAGONALS ARE QM2, QM1, QZE, QPl, QP2
G e e e e e e e e e e e e et ot e e e e o o e e o

NX1=NX-1

NX2=NX-2

DO 10 I=1,NXl
QZE(I)=UJML (I)*LJIML(I+1)

10 CONTINUE
QZE (NX) =DJIM1 (NX)
QZEIP1=QZE (NX)
DO 20 II=1,NX1
I=NX-1I
QZE(1)=DJIM1(I)+QZE(I)*QIEIP]
QZEIP1=QZE(I)

2¢ CONTINUE
DO 38 1=2,NX1
QM1 (I)=LJIML(I)*QZE(I)
QPL(I)=UJM1(I)*QZE(I+1)

38 CONTINUE
QP1(1)=UJML(1)*QZE (2)
QM1 (NX) =LJM1 (NX) *Q2E (NX)
DO 40 I=3,NX2
QM2 (I)=LJIM1(I-1)*QML(I) !
QP2(I)=UJML(I)*QPL(I+1)

40 CONTINUE
QP2(1)=UJM1(1)*QP1(2)
QP2 (2)=UJM1(2)*QP1 (3)
QM2 (NX1)=LJIML (NX2) *QML (NX1)
QM2 (NX) =LJML (NX1) *QM1 (NX)

QOO00000n0

(e XeNe N K¢l

MULTIGRID LINEAR SYSTEM SOLVERS 115

QM1 (l1)=0.0

QM2(2)=0.0

QP2 (NX1)=0.0

QPLl(NX)=0.0

DO 51 I=1,NX1

LD(I,1)=AJ(I,1)*QML(I)+AJ(I,2)*QM2(I+1)
51 CONTINUE

DO 52 I=1,NXl

LD(I,2)=AJ(I,1)*QZE(I)+AJ(I,2)*QML(I+1)
52 CONTINUE

DO 53 I=1,NXl

LD(I,3)=AJ(I,l)*QPL(I)+AJ(I,2)*QZE(I+1)
53 CONTINUE

DO 54 I=1,NXl

LD(1,4)=AJ(1,1)*QP2(I)+AJ(1,2)*QP1l(I+1)
54 CONTINUE

LD (NX,1)=AJ (NX,1) *QM1 (NX)

LD (NX,2)=AJ (NX,1) *QZE (NX)

THIRD AND FOURTH STEP -~ COMPUTATION OF D = D - 3-DIAG(L D U)
J J J J=-1 J-1

D IS REPRESENTED BY QMl, QZE, QPl

DO 68 I=2,NX

QM1 (I)=AJ(I,3)~-LD(I,1)*AJM1(I-1,7)-LD(I,2)*AJM1(I ,6)
60 CONTINUE

DO 70 I=1,NX1

QZE(I)=AJ(I,4)-LD(I,2)*AJM1(I ,7)-LD(I,3)*AJM1(I+1,6)
76 CONTINUE

DO 88 I=1,NX2

QP1(I)=AJ(I,S5)-LD(I,3)*AJM1(I+1,7)~LD(I,4)*AJM1(I+2,6)
8@ CONTINUE

QZE(NX)=AJ(NX,4)-LD(NX,2)*AJM1(NX,7)

QP1(NX1)=AJ(NX1,5)-LD(NX1,3)*AJM1(NX,7)

CALL TRIDEC(QM1,QZE,QP1,LJ,DJ,UJ, NX)
RETURN
END

116 HEMCER and DE ZEEUW

7. REFERENCES

Barkai, D. and Brandt, A. (1983) Vectorized Multigrid Poisson Solver
for the CDC CYBER 205, Appl. Math. Comp., 13, pp. 215-227.

Dendy (Jr.), J.E. (1982) Black Box multigrid, J. Comp. Phys., 48,
pp. 366-386.

Dendy (Jr.), J.E. (1983) Black Box Multigrid for Non-symmetric Problems,
Appl. Math. Comp., 13, pp. 261-283.

Foerster, H. and Witsch, K. (1982) Multigrid software for the solution
of elliptic problems on rectangular domains MGOO (Release 1), in
Multigrid Methods, (W. Hackbusch and U. Trottenberg, eds.), Lecture
Notes in Mathematics, 960, Springer Verlag, Berlin.

Hemker, P.W. (1982) On the comparison of Line-Gauss Seidel and ILU
relaxation in multigrid algorithms, in Computational and asymptotic
methods for boundary and interior layers (J.J.H. Miller, ed.), Boole
Press, Dublin, pp. 269-277.

Hemker, P.W. (1984) Multigrid methods for problems with a small para-
meter, in Numerical Analysis (D.F. Griffiths, ed.), Proceedings of
Dundee Conference 1983, Springer Lecture Series in Mathematics,
Springer Verlag, Berlin.

Hemker, P.W., Kettler, R., Wesseling, P. and de Zeeuw, P.M. (1983)
Multigrid Methods: Development of Fast Solvers, Appl. Math. Comp.,
13, pp. 311-326.

Hemker, P.W., Wesseling, P. and de Zeeuw, P.M. (1983) A portable vector
code for autonomous multigrid modules, in PDE Software: Modules,
Interfaces and Systems (B. Engquist, ed.), Proceedings IFIP WG 2.5
Working Conference, (North Holland) .

Kettler, R. (1982) Analysis and comparison of relaxation schemes in
robust multigrid and preconditioned conjugate gradient methods, in
Multigrid Methods (W. Hackbusch and U. Trottenberg, eds.), Springer
Lecture Series in Mathematics, 960, Springer Verlag, Berlin,
pp. 502-534.

Wesseling, P. (1982a) A robust and efficient multigrid method, in
Multigrid Methods (W. Hackbusch and U. Trottenberg, eds.), Springer
Lecture Series in Mathematics, 960, Springer Verlag, Berlin,
pp. 614-630.

Wesseling, P. (1982b) Theoretical and practical aspects of multigrid
method, SIAM J. Sci. Stat. Comp., 3, pp. 387-407.

